medcity converge recap pt 2
August 05, 2019

MedCity News: AI in Healthcare: From Data Gaps to Data Democratization

In the panel “The Data Problem in Scaling Artificial Intelligence in Healthcare” at the recent MedCity CONVERGE conference, experts from big pharma and health tech discussed challenges in scaling AI such as data gaps and navigating the potential ethical pitfalls of democratizing data.

Note: This article is the second of a two-part series. The quotes in this article have been edited and condensed for clarity.

In the panel, “The Data Problem in Scaling Artificial Intelligence” in Healthcare at the recent MedCity CONVERGE conference, experts from big pharma and health tech discussed opportunities and challenges posed by the data underpinning AI tools.

Panelists talked about some of the ways they enlisted AI to support cancer treatment. They also called attention to challenges such as the curation of data sets with normalized/standardized data and the need for context and transparency to avoid so called “black boxes”.

Participants included Chris Boone, Head of Real World Data and Analytics for Pfizer; Gaurav Singal, chief data officer at Foundation Medicine; Janak Joshi, chief technology officer and head of strategy at Life Image; and Nate Nussbaum, senior medical director at Flatiron Health. Brenda Hodge, chief marketing officer for healthcare at Nuance, served as the moderator.

Data gaps

Nussbaum of Flatiron Health highlighted the shortcomings of some clinical data. He pointed out that some variables that are important for characterizing a population aren’t captured through routine care because clinicians aren’t making those assessments on a regular basis. That’s led some companies to develop analytic approaches to deal with the missing data or approaches for using modeling to understand how to fill in those data gaps.

He also pointed out the importance of understanding outcomes in real world data compared with the data generated from a clinical trial.

“Something like mortality is fairly easy to define once you have the necessary source data. But something like whether a tumor is responding to treatment, in the real world, is much more complicated than in a clinical trial where you’re following set rules like Response Evaluation Criteria In Solid Tumors (RECIST) — a set of published rules that define when tumors in cancer patients improve (respond), stay the same (stabilize), or worsen (progress) during treatment.”

Democratizing data: Balancing pragmatism and responsibility with ethical considerations

Boone of Pfizer said although he’s a self described “data hippie” the democratization of data is fraught with ethical pitfalls because there are not yet best practices for how companies should interpret or analyze this data.

“On the one hand, we want to democratize the use of data, especially real-world data, because it can be used in so many contexts with so many use cases across the drug development life cycle…I hope that we can start to see much more data liquidity internationally and we can learn from all these patient experiences and be able to feed that back into not just clinical practice but clinical research. So how we create that model is still the million-dollar question, right? How do we create a model that’s sustainable, that becomes a win-win for all parties involved.

Joshi believes the patient should be at the center of this discussion, particularly given that some states have passed or are reviewing data privacy legislation akin to the GDPR legislation passed in the European Union.

“The patient should always be in the loop. It should not matter which vendor, facility, whether it’s ambulatory, or acute care, or an in-patient setting. Anywhere they are seen, patients should be aware of where their data is and how it is used. Putting information in the hands of the patients and engaging patients is becoming increasingly more important,” said Joshi.

He continued, “There was a big push about five years ago in the pharmaceutical space. Everybody was talking about beyond the pill. However, the least discussed topic was patient privacy, patient rights, and putting the patient in the loop with the trial process.”

Nussbaum agreed with Joshi but also emphasized the importance of making clinical research more patient-centered.

“I think the other side is helping to prioritize research questions that matter to patients to democratize the insights that we’re getting from those data sets. We can do that through collaborations with research partners, with academic centers. There are lots of ways to do that, but it involves getting a lot of parties together, working with patient advocacy organizations to figure out the best ways to put the data sets to use.”